ar X iv : 0 71 0 . 29 61 v 1 [ m at h . C A ] 1 6 O ct 2 00 7 Maximal regularity and Hardy spaces

نویسنده

  • Jiman Zhao
چکیده

In this work, we consider the Cauchy problem for u′ − Au = f with A the Laplacian operator on some Riemannian manifolds or a sublapacian on some Lie groups or some second order elliptic operators on a domain. We show the boundedness of the operator of maximal regularity f 7→ Au and its adjoint on appropriate Hardy spaces which we define and study for this purpose. As a consequence we reobtain the maximal Lq regularity on Lp spaces for 1 < p, q < ∞.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 71 0 . 13 81 v 1 [ m at h . FA ] 6 O ct 2 00 7 On the symplectic phase space of KdV

We prove that the Birkhoff map Ω for KdV constructed on H 0 (T) can be interpolated between H 0 (T) and L20(T). In particular, the symplectic phase space H 1/2 0 (T) can be described in terms of Birkhoff coordinates.

متن کامل

ar X iv : 0 71 0 . 27 55 v 1 [ m at h . PR ] 1 5 O ct 2 00 7 Reduced branching processes with very heavy tails

The reduced Markov branching process is a stochastic model for the genealogy of an unstructured biological population. Its limit behavior in the critical case is well studied for the Zolotarev-Slack regularity parameter α ∈ (0, 1]. We turn to the case of very heavy tailed reproduction distribution α = 0 assuming Zubkov’s regularity condition with parameter β ∈ (0,∞). Our main result gives a new...

متن کامل

ar X iv : 0 71 1 . 26 95 v 1 [ m at h . SP ] 1 6 N ov 2 00 7 REGULARITY AND THE CESÀRO – NEVAI CLASS

We consider OPRL and OPUC with measures regular in the sense of Ullman–Stahl–Totik and prove consequences on the Jacobi parameters or Verblunsky coefficients. For example, regularity on [−2, 2] implies lim N →∞ N −1 [ N n=1 (a n −1) 2 +b 2 n ] = 0.

متن کامل

ar X iv : 0 71 0 . 27 28 v 1 [ m at h . N T ] 1 5 O ct 2 00 7 PRIMES IN TUPLES II

We prove that lim inf n→∞ pn+1 − pn √ log pn(log log pn) < ∞, where pn denotes the n prime. Since on average pn+1 −pn is asymptotically log pn, this shows that we can always find pairs of primes much closer together than the average. We actually prove a more general result concerning the set of values taken on by the differences p− p between primes which includes the small gap result above.

متن کامل

ar X iv : 0 71 0 . 32 32 v 1 [ m at h . R T ] 1 7 O ct 2 00 7 REFLECTION GROUPS AND DIFFERENTIAL FORMS

We study differential forms invariant under a finite reflection group over a field of arbitrary characteristic. In particular, we prove an analogue of Saito’s freeness criterion for invariant differential 1-forms. We also discuss how twisted wedging endows the invariant forms with the structure of a free exterior algebra in certain cases. Some of the results are extended to the case of relative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007